Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(24): e2300812, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37357136

RESUMO

Cells regulate adhesion to the fibrillar extracellular matrix (ECM) of which fibronectin is an essential component. However, most studies characterize cell adhesion to globular fibronectin substrates at time scales long after cells polarize and migrate. To overcome this limitation, a simple and scalable method to engineer biomimetic 3D fibrillar fibronectin matrices is introduced and how they are sensed by fibroblasts from the onset of attachment is characterized. Compared to globular fibronectin substrates, fibroblasts accelerate adhesion initiation and strengthening within seconds to fibrillar fibronectin matrices via α5ß1 integrin and syndecan-4. This regulation, which additionally accelerates on stiffened fibrillar matrices, involves actin polymerization, actomyosin contraction, and the cytoplasmic proteins paxillin, focal adhesion kinase, and phosphoinositide 3-kinase. Furthermore, this immediate sensing and adhesion of fibroblast to fibrillar fibronectin guides migration speed, persistency, and proliferation range from hours to weeks. The findings highlight that fibrillar fibronectin matrices, compared to widely-used globular fibronectin, trigger short- and long-term cell decisions very differently and urge the use of such matrices to better understand in vivo interactions of cells and ECMs. The engineered fibronectin matrices, which can be printed onto non-biological surfaces without loss of function, open avenues for various cell biological, tissue engineering and medical applications.


Assuntos
Fibronectinas , Sindecana-4 , Adesão Celular/fisiologia , Fibronectinas/química , Fibronectinas/metabolismo , Sindecana-4/metabolismo , Biomimética , Fosfatidilinositol 3-Quinases , Integrina alfa5beta1/metabolismo , Proliferação de Células
2.
Free Radic Res ; 55(5): 533-546, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33455485

RESUMO

Histone modifications and DNA methylation together govern promoter availability, thereby influencing gene expression. This study queries the unicellular chlorophyte, Chlamydomonas reinhardtii using a three step "epigenetic assay" design to phenotypically track the variegation of a randomly integrated Paromomycin resistance transgene(s) (PmR). Based on its position of integration, the PmR gene expression hinged on two epigenetic hallmarks: the spreading of heterochromatin, and the transmissible memory of epigenetic states across generations. Using a spot-dilution analysis, the loss of antibiotic resistance phenotype was scored from 0 to 4, four being maximally silenced. Appropriate construct designs were used to demonstrate that the cis-spread of heterochromatin could be interfered with a stronger euchromatic barrier (TUB2 promoter). When assayed for metal ion stress, a combination of Mn deficiency with excess Cu or Zn stress was shown to induce gene silencing in Chlamydomonas. Cu stress resulted in the accumulation of intracellular ROS, while Zn stress elevated the sensitivity to ROS. As proof of functional conservation, mammalian epigenetic drugs demonstrably interfered with stress-induced gene silencing. Finally, a selected group of transgenic clones responsive to HDACi sodium butyrate, when tested in a gradient plate format showed similarity in phenotype to the plant-derived compound cinnamic acid. This indicated a possible commonality in their mode of action, unlike curcumin which might have a different mechanism. Thus, using binned libraries, based on a common set of responses to known drugs, a cost-effective high-throughput screening strategy for epigenetically active compounds from plants or other sources is described.


Assuntos
Chlamydomonas/genética , Epigenômica/métodos , Inativação Gênica/imunologia , Animais , Programas de Rastreamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...